回転を直線へ
ロータリーライナー

1. はじめに
ロータリーライナーは、ねじの無い丸軸を回転させると、ねじと同じ原理で軸方向に移動し、回転運動を直線運動に変換する新しい機構の直線駆動装置です。

2. 構造

特殊な構造をもった複数の玉軸受が一つの軸受箱に組込まれています。それぞれの玉軸受は、傾斜をもった間隔輪と波座金で軸線に対し傾いて取付けられ、ばね圧により玉軸受が軸に押しつけられています。この軸受はリードに応じた角度で軸に接し、軸を回転させることにより軸上を直線運動します。軸受箱には取付け用ボルト穴を設けており、テーブルに取付けられるようになっている。

3. 特長
○右推進用と左推進用のロータリーライナーを同一軸に挿入して軸を回転すると、それぞれ前進または後退します。（図4）
○おめらかで静粛に運転します。
○機構が簡単で小形軽量です。
○過荷耐防止の機能があります。
○わずかな送りもできます。
○低価格です。
4. 主要寸法
AR00R形
AR00L形
カバー付き
AR00CR形
AR00CL形

表1

<table>
<thead>
<tr>
<th>径径 [mm]</th>
<th>ユニット呼び番号</th>
<th>主要寸法 [mm]</th>
<th>質量 [kg]</th>
<th>最大軸力 Fa max [N]</th>
<th>最大リード [mm]</th>
<th>無負荷トルク To [N·cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>AR15R</td>
<td>h: 19.5</td>
<td>30</td>
<td>68</td>
<td>M5×0.8</td>
<td>0.23</td>
</tr>
<tr>
<td>15</td>
<td>AR15CR</td>
<td>W: 40</td>
<td>30</td>
<td>68</td>
<td>M5×0.8</td>
<td>0.23</td>
</tr>
<tr>
<td>20</td>
<td>AR20R</td>
<td>a: 50</td>
<td>40</td>
<td>92</td>
<td>M6×1.0</td>
<td>0.55</td>
</tr>
<tr>
<td>20</td>
<td>AR20CR</td>
<td>b: 50</td>
<td>40</td>
<td>92</td>
<td>M6×1.0</td>
<td>0.55</td>
</tr>
<tr>
<td>25</td>
<td>AR25R</td>
<td>c: 85</td>
<td>35</td>
<td>94</td>
<td>M6×1.0</td>
<td>0.76</td>
</tr>
<tr>
<td>25</td>
<td>AR25CR</td>
<td>d: 85</td>
<td>35</td>
<td>94</td>
<td>M6×1.0</td>
<td>0.76</td>
</tr>
</tbody>
</table>

備考
1) 呼び番号のRは右回転、Lは左回転を示し、Cはカバー付きであることを示します。
2) 使用温度範囲は−15℃～+70℃です。
3) 工学単位への換算 1N=0.102k gf · 1N·cm=0.102kgf·cm

5. 呼び番号

表2

<table>
<thead>
<tr>
<th>呼び番号</th>
<th>hの許容差</th>
<th>eの許容差</th>
<th>fの許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR15</td>
<td>±150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR20</td>
<td>±150</td>
<td>±200</td>
<td>±200</td>
</tr>
<tr>
<td>AR25</td>
<td>±150</td>
<td>±200</td>
<td>±200</td>
</tr>
</tbody>
</table>

6. 精度

表3

<table>
<thead>
<tr>
<th>径径d [mm]</th>
<th>呼び番号</th>
<th>dの許容差 [μm]</th>
<th>gの許容差 [μm]</th>
<th>標準長さl [mm]</th>
<th>有効硬化層の深さ (最小) [mm]</th>
<th>質量 [kg/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1500</td>
<td>2000</td>
<td>1</td>
</tr>
<tr>
<td>SF20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1500</td>
<td>2000</td>
<td>1.5</td>
</tr>
<tr>
<td>SF25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1500</td>
<td>2000</td>
<td>1.5</td>
</tr>
</tbody>
</table>

備考：軸外径面表面のあらさは1.55以下です。
8. 選定計算

8-1 ロータリーライナーの選定

1）推力（アキシャル荷重）

ロータリーライナーの推力は（1）によって求めます。

\[F_a = 2 \left(\frac{m \cdot v + f + m \cdot g}{t_h} \right) \] (1)

\(F_a \): 推力（アキシャル荷重） N
\(m \): ロータリーライナー、テーブル等によって軸に作用するすべての質量 kg
\(v \): 速度 m/s
\(f \): テーブルの摩擦力 N
\(t_h \): 立ち上がり時間 s
\(g \): 重力加速度 9.8 m/s²

式（1）によって求めた値が表1の最大推力（Fama）以下となるように選定します。
なお、2個以上を組合わせて使用する場合の推力はその和の推力となります。

2）許容回転数

ロータリーライナーの許容回転数は、軸の固有振動による共振を考慮して、式（2）で求めます。

\[n = 9.76 \times 10^{6} \times \lambda^{3} \cdot \frac{d}{L} \] (2)

\(n \): 許容回転数 r/min
\(\lambda \): 軸の支持方法による係数 (表4)
\(d \): 軸径 mm
\(L \): 軸の支持間距離 mm

式（2）によって求めた回転数が表1の許容回転数以下となるように選定します。

3）駆動トルク

駆動トルクは式（3）で求めます。

\[T = \frac{F_a \cdot \ell}{2 \pi \times 1000} \times T_o \] (3)

\(T \): 駆動トルク Ncm
\(T_o \): 無負荷トルク（表1参照） Ncm
\(F_a \): 推力（アキシャル荷重） N
\(\ell \): リード mm

9. 寿命

9-1 ロータリーライナーの定格寿命

\[L_r = \frac{d}{3.6v} \left(\frac{C_r}{Y_{e} \cdot F_{a}} \right)^3 \] (4)

\(L_r \): ロータリーライナーの寿命時間 h
\(d \): リード mm
\(v \): 速度 m/s
\(C_r \): ロータリーライナーの基本動
\(Y_{e} \): ロータリーライナー係数（表5参照） N
\(F_{a} \): 推力 N

<table>
<thead>
<tr>
<th>表5 呼び番号</th>
<th>(\ell)</th>
<th>Cr</th>
<th>Ye</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR15</td>
<td>7.5</td>
<td>5,585</td>
<td>5.75</td>
</tr>
<tr>
<td>AR20</td>
<td>10</td>
<td>9,360</td>
<td>5.75</td>
</tr>
<tr>
<td>AR25</td>
<td>12.5</td>
<td>10,100</td>
<td>5.75</td>
</tr>
</tbody>
</table>

9-2 グリース寿命

\[\log L_g = 4.73 - (t - 17.2)(0.0104 + 8.46 \times 10^{-7}n) - 0.03 \left(\frac{n(ye \cdot Fa)^{\frac{1}{3}}}{Cr} \right)^{\frac{2}{3}} \] (5)

\(L_g \): グリースの平均寿命 h
\(t \): ロータリーライナーの運転温度 ℃
\(n \): 軸の回転数 r/min

表4 軸の支持方法による係数 \(\lambda \)

固定→自由	1.875	軸端を2個のアンギュラ玉軸受を正面合わせ又は背面合わせなどにして固定し他端は、支えない場合。
支持→支持	3.141	軸の両端を玉軸受ユニットなどで支える場合。
固定→固定	3.927	軸端を2個のアンギュラ玉軸受を正面又は背面合わせなどにして支え他端は、玉軸受ユニットで支える場合。
固定→固定	4.73	軸の両端をそれぞれ2個のアンギュラ玉軸受を正面又は背面合わせなどで支える場合。
10. 選定計算例

使用条件
1) 軸の支持方法（水平軸）
 支持一支持 $\lambda : 3.141$
2) 軸の支持間距離 $L : 1000$mm
3) テープの質量 $m : 50$kg
4) 速度 $V : 3$m/min=0.05m/s
5) 立上り時間 $t_i : 0.5$s

10-1 ロータリーライナーの選定

1) 所要推力

$$Fa = 2 \left(m \cdot \frac{V}{t_i} + F + m \cdot g \right)$$

Fa: 推力 N
m: 質量 50kg
V: 速度 0.05 m/s
t_i: 立上り時間 0.5 s
F: テープの摩擦力
$F = 9.8 \mu \cdot m$
μ: 摩擦係数0.01
$= 9.8 \times 0.01 \times 50$
$= 4.9N$

$m \cdot g$は水平軸であるので0とします。

$$Fa = 2 \left(50 \times \frac{0.05}{0.5} + 4.9 + 0 \right)$$
$= 19.8N$

したがって、最大推力98Nを有するAR15が適当です。

2) 許容回転数

$$n = \frac{9.76 \times 10^6 \times \lambda^2 \cdot d}{L^2}$$

n: 許容回転数 r/min
d: 軸径（AR15) 15 mm
L: 軸の支持間距離 1000 mm
λ: 軸の支持方法による係数 3.141

$$n = \frac{9.76 \times 10^6 \times 3.141^2 \times 1.5}{1000^2}$$
$= 1444$ rpm

3) 所要回転数

Vを満足させる回転数n'

$$n' = \frac{60 \times 1000 \times V}{l}$$
l: リード (AR15) 7.5mm

$$= \frac{60 \times 1000 \times 0.05}{7.5}$$
$= 400$rpm

$n \geq n'$であり、この速度を得ることができます。

10-2 モータの選定

1) 所要駆動トルク

$$T = \frac{Fa \cdot l}{20 \pi} + To$$

T: 駆動トルク $N \cdot \text{cm}$
l: リード 7.5 mm
To: 無負荷トルク 3.04 N cm

$$T = \frac{19.8 \times 7.5}{20 \pi} + 3.04$$
$\approx 5.41N \cdot \text{cm}$

2) 速度比

$$i = \frac{N}{n'}$$

$= \frac{1500}{400} = 3.75$

i: 速度比
N: モータの定格回転数 1500r/min

この場合、減速は、歯付きベルトと歯付きブーリを用います。
ブーリ比 1:3.75

3) モータの所要トルク

$$T_m = T \cdot \frac{1}{i \cdot \eta}$$

$= \frac{5.41 \times 1}{3.75 \times 0.85}$
$\approx 1.70N \cdot \text{cm}$

T_m: モータの所要トルク $N \cdot \text{cm}$
T: 所要駆動トルク 5.41 N cm
η: 効率 0.85

4) モータの選定

定格回転数：1500 r/min
定格トルク：1.70 N cm

を満足するモータを選定します。
ロータリーライナー

10-3 寿命
1）ロータリーライナーの定格寿命
呼び番号AR15R、推力Fa：19.8N、速度V：0.05m/s
の定格寿命を求めると 式(4)より
\[L_r = \frac{7.5}{3.6 \times 0.05 \left(\frac{5585}{5.75 \times 19.8} \right)^3} \]
\[\approx 4.9 \times 10^4 \text{h} \]
2）グリースの平均寿命
温度50℃としてグリース平均寿命を求めると
式(5)より
\[\log L_g = 4.73 - (50-17.2)(0.0104+8.46 \times 10^{-2}) \times 400 - 0.03 \times 400 \times (5.75 \times 19.8)^{1.5} \]
\[L_g = 2.3 \times 10^4 \text{h} \]
1)と2)の計算結果の小さい方をロータリーライナー
の寿命とします。

11. 往復誤差
1 往復したときの往きの走行距離と、戻りの走行距離
の誤差は走行距離の2%以内です。
備考：位置決めが必要とする場合にはセンサーをご使用
ください。

12. 取扱い上の注意
○軸は硬さHc58以上に焼入れ焼戻し後、公差種類記号
g6に研削仕上げしたものを使用します。
○軸端に面取りが無い場合は、1.5C以上の面取加工
をしてください。
○ロータリーライナーへ軸を挿入する際は、右回転Rの
ときは、軸またはロータリーライナーを右方向に回しな
がらねじ込みます。左回転のときは、逆方向に回して、
ねじ込みます。
（たたき込むことは絶対にしないでください。）
○垂直軸で使用する場合は、ASAHにご相談ください。
○できるだけラジアル荷重や、モーメント荷重が作用し
ないようにしてご使用ください。
○軸は2〜4週間毎に清掃し、軸受用潤滑グリースを薄
く塗布してください。
○使用条件によりリードが多少ずれる場合があるので、
正確なリードを必要とする用途にはご相談ください。
○各パーツにおける色につきましては、材料の成分や
表面処理等により色調に差が生じる場合があります。
○ご使用前にhttp://www.asahiseiko.co.jpに
アクセス頂き、下記をご確認ください。
製品情報→技術情報→直線運動機器について
→保証について
●主要寸法は、予告なく変更することがありますのでご了承ください。
表7

<table>
<thead>
<tr>
<th>軸径 (mm)</th>
<th>ユニットの呼び番号</th>
<th>主要寸法 (mm)</th>
<th>取り付けボルト呼び</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>80</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>32</td>
<td>112</td>
<td>20</td>
</tr>
</tbody>
</table>

表8

<table>
<thead>
<tr>
<th>軸径 (mm)</th>
<th>ユニットの呼び番号</th>
<th>主要寸法 (mm)</th>
<th>取り付けボルト呼び</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
<td>42</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>55</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>95</td>
<td>60</td>
<td>16</td>
</tr>
</tbody>
</table>
旭精工株式会社
http://www.asahiseiko.co.jp

本社・工場 〒593-8324
樋南市西区風島町6丁目570番地1
TEL：(072)271-1221 FAX：(072)273-0058

東京支社 〒140-0001
東京都品川区北品川3丁目6番2号晶川ビル
TEL：(03)3471-9441 FAX：(03)3471-9446
E-mail：tokyo@asahiseiko.co.jp

名古屋支社 〒460-0002
名古屋市中区丸の内1丁目15番26号
TEL：(052)211-3001 FAX：(052)211-3005
E-mail：nagoya@asahiseiko.co.jp

大阪支社 〒550-0021
大阪市西区川口2丁目8番28号
TEL：(06)6583-3731 FAX：(06)6583-3735
E-mail：osaka@asahiseiko.co.jp

西日本支社 〒802-0001
北九州市小倉北区浅野2丁目5番1号小倉興産ビル
TEL：(093)551-3081 FAX：(093)521-8098
E-mail：nisinlin@asahiseiko.co.jp

北日本支店 〒983-0043
仙台市宮城野区秋野町2丁目3番1号
TEL：(022)283-1431 FAX：(022)283-1432
E-mail：kitanishita@asahiseiko.co.jp

広島支店 〒730-0043
広島市中区富士見町2番21号西村ビル
TEL：(082)244-2730 FAX：(082)244-2732
E-mail：hiroshima@asahiseiko.co.jp

静岡営業所 〒424-0888
静岡市清水区中之郷1丁目4番13号
TEL：(054)344-6388 FAX：(054)347-9449
E-mail：sizuoka@asahiseiko.co.jp

金沢営業所 〒920-0805
金沢市小金町8番16号万石ビル
TEL：(076)252-5880 FAX：(076)251-4347
E-mail：kanawara@asahiseiko.co.jp

四国営業所 〒761-8073
高松市大田下町2354番地1
TEL：(087)866-9888 FAX：(087)866-9889
E-mail：sikoku@asahiseiko.co.jp

CHINA OFFICE Room#20C, Secondary Building, Lvjiguangchang,
Chegongmiao, Shennan Road, Futian District, Shenzhen City,
Guangdong Province, China.518048
Tel：+86-755-23902930 23605690 23605700
Fax：+86-755-23607911

販売店

Feb.2014